Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167167, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626829

RESUMO

The microbial toxin ß-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.

2.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542396

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder with an unknown cause. Recent research has highlighted the importance of the gut in neuronal and immune maturation through the exchange of nutrients and cellular signals. This has led to the "gut-first PD" hypothesis, which aims to explain many of the sporadic cases and their prodromal intestinal symptoms, such as constipation and intestinal α-synuclein (aSyn) aggregation. The link between mitochondrial dysfunction and aSyn deposition is central to PD pathophysiology, since they can also trigger pro-inflammatory signals associated with aSyn deposition, potentially contributing to the onset of PD. As mitochondria are derived from ancestral alpha-proteobacteria, other bacteria may specifically target this organelle. We sought to use Nocardia cyriacigeorgica, a bacterium previously associated with parkinsonism, and dextran sulfate sodium (DSS) as pro-inflammatory modulators to gain further insight into the onset of PD. This study indicates that aSyn aggregation plus mitochondrial dysfunction without intestinal barrier leakage are not sufficient to trigger gut-first PD.


Assuntos
Colite , Doenças Mitocondriais , Nocardia , Doença de Parkinson , Humanos , alfa-Sinucleína , Colite/induzido quimicamente , Neurônios
3.
Vet Med Int ; 2024: 2856759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292207

RESUMO

Anxiety disorders in dogs are ever-growing and represent an important concern in the veterinary behavior field. These disorders are often disregarded in veterinary clinical practice, negatively impacting the animal's and owner's quality of life. Moreover, these anxiety disorders can potentially result in the abandonment or euthanasia of dogs. Growing evidence shows that the gut microbiota is a central player in the gut-brain axis. A variety of microorganisms inhabit the intestines of dogs, which are essential in maintaining intestinal homeostasis. These microbes can impact mental health through several mechanisms, including metabolic, neural, endocrine, and immune-mediated pathways. The disruption of a balanced composition of resident commensal communities, or dysbiosis, is implicated in several pathological conditions, including mental disorders such as anxiety. Studies carried out in rodent models and humans demonstrate that the intestinal microbiota can influence mental health through these mechanisms, including anxiety disorders. Furthermore, novel therapeutic strategies using prebiotics and probiotics have been shown to ameliorate anxiety-related symptoms. However, regarding the canine veterinary behavior field, there is still a lack of insightful research on this topic. In this review, we explore the few but relevant studies performed on canine anxiety disorders. We agree that innovative bacterial therapeutical approaches for canine anxiety disorders will become a promising field of investigation and certainly pave the way for new approaches to these behavioral conditions.

4.
Int J Pharm ; 646: 123451, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37774759

RESUMO

Biopolymers present ideal properties to be used in wound dressing solutions. By mixing two oppositely charged macromolecules it is possible to form polyelectrolyte complex (PEC) based cryogels using lyophilization. Their application in the biomedical field is limited due to their sterilization requirements, as conventional methods compromise their physicochemical properties. ScCO2 appears as an alternative method for decontamination. This work assessed several cryogel PEC formulations, chitosan-pectin, gelatine-xanthan gum and alginate-gelatine. PEC formation was confirmed by FTIR and rheological analysis. While steam sterilization compromised cryogels' chemical and morphological properties, decontamination with scCO2 proved to be a promising method for decontamination of PEC-cryogels, because, similarly to what is observed with hydrogen peroxide, it does not compromise their physicochemical properties.

5.
Cell Mol Life Sci ; 80(6): 166, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249642

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disease characterized by the loss of dopaminergic neurons in the midbrain. In the prodromal phase several autonomic symptoms including orthostatic hypotension and constipation are correlated with increased α-synuclein pathology in peripheral tissues. It is currently accepted that some idiopathic PD cases may start in the gut (body-first PD) with accumulation of pathological α-synuclein in enteric neurons that may subsequently propagate caudo-rostrally to the central nervous system. In addition to the already-established regulation of synaptic vesicle trafficking, α-synuclein also seems to play a role in neuronal innate immunity after infection. Our goal was to understand if seeding the gut with the foodborne pathogen Listeria monocytogenes by oral gavage would impact gut immunity and eventually the central nervous system. Our results demonstrate that L. monocytogenes infection induced oligomerization of α-synuclein in the ileum, along with a pronounced pro-inflammatory local and systemic response that ultimately culminated in neuronal mitochondria dysfunction. We propose that, having evolved from ancestral endosymbiotic bacteria, mitochondria may be directly targeted by virulence factors of intracellular pathogens, and that mitochondrial dysfunction and fragmentation resulting also from the activation of the innate immune system at the gut level, trigger innate immune responses in midbrain neurons, which include α-synuclein oligomerization and neuroinflammation, all of which hallmarks of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína , Doenças Neurodegenerativas/patologia , Mitocôndrias/patologia , Neurônios Dopaminérgicos/patologia
6.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901773

RESUMO

Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Imunidade Inata , Alarminas/metabolismo , Bactérias , Neurônios/metabolismo
7.
Commun Biol ; 6(1): 108, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707645

RESUMO

The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.


Assuntos
Mycobacterium , Mycobacterium/genética , Lipopolissacarídeos , Manosiltransferases , Metiltransferases
8.
Gut ; 72(1): 73-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836918

RESUMO

OBJECTIVE: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin ß-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN: To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS: BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doença de Parkinson/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo
9.
Neurosci Bull ; 39(1): 113-124, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35994167

RESUMO

The way sporadic Parkinson's disease (PD) is perceived has undergone drastic changes in recent decades. For a long time, PD was considered a brain disease characterized by motor disturbances; however, the identification of several risk factors and the hypothesis that PD has a gastrointestinal onset have shed additional light. Today, after recognition of prodromal non-motor symptoms and the pathological processes driving their evolution, there is a greater understanding of the involvement of other organ systems. For this reason, PD is increasingly seen as a multiorgan and multisystemic pathology that arises from the interaction of susceptible genetic factors with a challenging environment during aging-related decline.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Trato Gastrointestinal , Fatores de Risco , Sintomas Prodrômicos , alfa-Sinucleína
10.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358513

RESUMO

Inflammation and oxidative stress characterize a number of chronic conditions including neurodegenerative diseases and aging. Inflammation is a key component of the innate immune response in Alzheimer's disease and Parkinson's disease of which oxidative stress is an important hallmark. Immune dysregulation and mitochondrial dysfunction with concomitant reactive oxygen species accumulation have also been implicated in both diseases, both systemically and within the Central Nervous System. Mitochondria are a centrally positioned signalling hub for inflammatory responses and inflammatory cells can release reactive species at the site of inflammation often leading to exaggerated oxidative stress. A growing body of evidence suggests that disruption of normal gut microbiota composition may induce increased permeability of the gut barrier leading to chronic systemic inflammation, which may, in turn, impair the blood-brain barrier function and promote neuroinflammation and neurodegeneration. The gastrointestinal tract is constantly exposed to myriad exogenous substances and microbial pathogens, which are abundant sources of reactive oxygen species, oxidative damage and pro-inflammatory events. Several studies have demonstrated that microbial infections may also affect the balance in gut microbiota composition (involving oxidant and inflammatory processes by the host and indigenous microbiota) and influence downstream Alzheimer's disease and Parkinson's disease pathogenesis, in which blood-brain barrier damage ultimately occurs. Therefore, the oxidant/inflammatory insults triggered by a disrupted gut microbiota and chronic dysbiosis often lead to compromised gut barrier function, allowing inflammation to "escape" as well as uncontrolled immune responses that may ultimately disrupt mitochondrial function upwards the brain. Future therapeutic strategies should be designed to "restrain" gut inflammation, a goal that could ideally be attained by microbiota modulation strategies, in alternative to classic anti-inflammatory agents with unpredictable effects on the microbiota architecture itself.

11.
Front Microbiol ; 13: 873555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495641

RESUMO

Serotonin is a phylogenetically ancient compound found in animals, plants, and some bacteria. In eukaryotes, serotonin is synthesized from the aromatic amino acid tryptophan via the key enzymes aromatic amino acid hydroxylase (AAAH) and aromatic amino acid decarboxylase (AAAD). Serotonin is also an intermediate in the melatonin biosynthetic pathway and is involved in several vital functions. In humans, serotonin is produced in the gut and in the brain, is critical in the regulation of multiple body functions, and its depletion has been implicated in multiple neurological disorders including depression and Alzheimer's disease, as well as other peripheral conditions namely irritable bowel syndrome and fibromyalgia. The serotonin biosynthetic pathway is well described in eukaryotes, but very little is known about this pathway in bacteria. Evidence points to similar pathways since eukaryote-like AAAH and AAAD (and their genes) have been identified in multiple bacteria, even though serotonin production has not yet been detected in most species. Although data on bacterial tryptophan decarboxylase genes are very limited and no bacterial tryptophan hydroxylase genes have been identified to date, evidence suggests that serotonin production in bacteria might occur through different AAAH and AAAD. Substrate promiscuity in these enzymes has been previously reported and seems to be the key aspect in bacterial serotonin synthesis. Considering the human gut microbiota as a potential source of serotonin, further investigation on its biosynthetic pathways in microbes might lead to important discoveries, which may ultimately foster the development of new therapeutic strategies to treat serotonin depletion-related disorders in humans.

12.
Ageing Res Rev ; 70: 101396, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171417

RESUMO

Recent evidence confirms that PD is indeed a multifactorial disease with different aetiologies and prodromal symptomatology that likely depend on the initial trigger. New players with important roles as triggers, facilitators and aggravators of the PD neurodegenerative process have re-emerged in the last few years, the microbes. Having evolved in association with humans for ages, microbes and their products are now seen as fundamental regulators of human physiology with disturbances in their balance being increasingly accepted to have a relevant impact on the progression of disease in general and on PD in particular. In this review, we comprehensively address early studies that have directly or indirectly linked bacteria or other infectious agents to the onset and progression of PD, from the earliest suspects to the most recent culprits, the gut microbiota. The quest for effective treatments to arrest PD progression must inevitably address the different interactions between microbiota and human cells, and naturally consider the gut-brain axis. The comprehensive characterization of such mechanisms will help design innovative bacteriotherapeutic approaches to selectively shape the gut microbiota profile ultimately to halt PD progression. The present review describes our current understanding of the role of microorganisms and their endosymbiotic relatives, the mitochondria, in inducing, facilitating, or aggravating PD pathogenesis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doença de Parkinson , Encéfalo , Humanos , Doença de Parkinson/terapia
13.
Mol Ther Methods Clin Dev ; 20: 726-739, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738327

RESUMO

Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.

14.
Antioxid Redox Signal ; 34(8): 694-711, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098485

RESUMO

Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.


Assuntos
Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos
15.
J Neuroinflammation ; 17(1): 332, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153477

RESUMO

BACKGROUND: After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. ß-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS: Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1ß. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1ß levels were also determined by ELISA. RESULTS: Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1ß. Increased caspase-1 activity resulted in elevated levels of mature IL-1ß. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aß peptides production, two hallmarks of AD. CONCLUSIONS: Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aß pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.


Assuntos
Doença de Alzheimer/patologia , Diamino Aminoácidos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Alzheimer/imunologia , Animais , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Toxinas de Cianobactérias , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Neurônios/imunologia , Neurônios/patologia
17.
J Immunol Methods ; 481-482: 112792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32387697

RESUMO

Whole-blood fixation provides a rapid and simplified method for cell preservation compared to isolation of peripheral blood mononuclear cells (PBMCs). This can be especially important for sample acquisition and storage in resource-limited settings. However, some caveats have been reported, such as reduced cell marker recognition. Here, we evaluated the whole-blood proteomic stabilizer PROT1 and compared recognition of 53 common cell markers in fixed buffy coats and cryopreserved PBMCs isolated from the same donor. Several antibodies completely lost their binding to the cells, while others presented with partial loss of marker recognition or no effect at all. Based on the screened antibodies, we designed two antibody panels allowing phenotyping of B cells, monocytes, and dendritic cells and also T cells and NK cells in both fixed and non-fixed material. Taken together, our observations suggest that antibodies intended to be used with fixed blood first need to be evaluated for marker recognition and staining intensity, in comparison with fresh samples or cryopreserved PBMCs.


Assuntos
Anticorpos/imunologia , Preservação de Sangue , Leucócitos Mononucleares/imunologia , Anticorpos/sangue , Biomarcadores/sangue , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia
18.
Front Aging Neurosci ; 12: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317956

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).

19.
Microbiology (Reading) ; 166(5): 474-483, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32100712

RESUMO

Mycobacterium hassiacum is so far the most thermophilic among mycobacteria as it grows optimally at 50 °C and up to 65 °C in a glycerol-based medium, as verified in this study. Since this and other nontuberculous mycobacteria (NTM) thrive in diverse natural and artificial environments, from where they may access and infect humans, we deemed essential to probe M. hassiacum resistance to heat, a strategy routinely used to control microbial growth in water-supply systems, as well as in the food and drink industries. In addition to possibly being a threat in its own right in rare occasions, M. hassiacum is also a good surrogate for studying other NTM species more often associated with opportunistic infection, namely Mycobacterium avium and Mycobacterium abscessus as well as their strictly pathogenic counterparts Mycobacterium tuberculosis and Mycobacterium leprae. In this regard, this thermophilic species is likely to be useful as a source of stable proteins that may provide more detailed structures of potential drug targets. Here, we investigate M. hassiacum growth at near-pasteurization temperatures and at different pHs and also characterize its thermostable glucosyl-3-phosphoglycerate synthase (GpgS), an enzyme considered essential for M. tuberculosis growth and associated with both nitrogen starvation and thermal stress in different NTM species.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Mycobacteriaceae/crescimento & desenvolvimento , Mycobacteriaceae/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Glucosiltransferases/genética , Concentração de Íons de Hidrogênio , Mycobacteriaceae/metabolismo , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Micobactérias não Tuberculosas/metabolismo , Pasteurização , Temperatura
20.
IUCrJ ; 6(Pt 4): 572-585, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316802

RESUMO

Bacteria are challenged to adapt to environmental variations in order to survive. Under nutritional stress, several bacteria are able to slow down their metabolism into a nonreplicating state and wait for favourable conditions. It is almost universal that bacteria accumulate carbon stores to survive during this nonreplicating state and to fuel rapid proliferation when the growth-limiting stress disappears. Mycobacteria are exceedingly successful in their ability to become dormant under harsh circumstances and to be able to resume growth when conditions are favourable. Rapidly growing mycobacteria accumulate glucosylglycerate under nitrogen-limiting conditions and quickly mobilize it when nitrogen availability is restored. The depletion of intracellular glucosyl-glycerate levels in Mycolicibacterium hassiacum (basonym Mycobacterium hassiacum) was associated with the up-regulation of the gene coding for glucosylglycerate hydrolase (GgH), an enzyme that is able to hydrolyse glucosylglycerate to glycerate and glucose, a source of readily available energy. Highly conserved among unrelated phyla, GgH is likely to be involved in bacterial reactivation following nitrogen starvation, which in addition to other factors driving mycobacterial recovery may also provide an opportunity for therapeutic intervention, especially in the serious infections caused by some emerging opportunistic pathogens of this group, such as Mycobacteroides abscessus (basonym Mycobacterium abscessus). Using a combination of biochemical methods and hybrid structural approaches, the oligomeric organization of M. hassiacum GgH was determined and molecular determinants of its substrate binding and specificity were unveiled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...